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Abstract

Deep learning techniques are increasingly used for med-
ical image interpretation due to the need for fast and ac-
curate diagnoses. Work on chest x-rays is less developed
compared to other diseases because there are only a few
reliable datasets. Our work examines the recently released
large (>200,000) chest x-ray dataset, CheXpert, using mod-
els that previously produced state-of-the-art results on ear-
lier chest x-ray datasets. We experimented with different
versions of an auto-encoder based CNN and Densenet-121
on the CheXpert dataset. Our results were promising: we
achieved an average AUC (area under the curve) of 0.829
with the auto-encoder based CNN.

1. Introduction

Many heart and lung diseases require Chest X-Rays
to be diagnosed.However, if the x-rays are not accurately
and quickly examined, the consequences can be fatal.[18]
Therefore, there is a crucial need for a high performing
computer aided diagnosis system for chest x-rays. In this
work, we investigate multi-label classification for chest x-
rays using deep learning.

Compared to other disease classification problems, there
is little work done on identifying heart and lung diseases
from chest x-rays [19]. Radiologists tend to disagree about
the appearance of diseases in chest x-rays [3] which has
resulted in there being relatively few accurately labeled
datasets. Recently, CheXpert, a large dataset consisting of
more than 200,000 chest x-rays and 65,000 patients was re-
leased. [11] The goal of this work is to explore existing
methods that were trained on other chest x-ray datasets and
apply them to this new dataset. Ideally, these existing meth-
ods have high performance on the new dataset.

The rest of the paper is organized as follows: section 2
is Literature Review, section 3 contains dataset discussion,
section 4 describes our methodology, section 5 presents our
experiments and results, section 6 discusses the results and
potential limitations and improvements, and we conclude in
section 7.

2. Literature Review
2.1. Deep learning in medical imaging

Deep learning approaches in medical imaging are out-
performing experts in interpretation tasks [22, 21, 6, 26] due
to high-quality datasets [33, 11, 12] and high-performing
network architectures [7, 9, 30, 35]. CNNs [16, 14] are
dominating medical imaging detection and classification
problems such as pulmonary tuberculosis detection [15],
lung cancer detection [10], skin cancer classification [5] and
others [20, 17].

2.2. Multi-label classification of chest x-rays (CXRs)

In multi-label classification, each sample is labeled with
one or several classes [34, 32]. A lot of work has been
done on multi-label classification of CXRs. CheXNet
[22], a DenseNet-121 trained on ChestX-ray14 dataset [33],
achieved state-of-the-art performance and exceeded radiol-
ogist performance on pneumonia using the F1 metric. An-
other approach trains a 121-layer DenseNet on CheXpert
[11] dataset (224,316 scans) and handles uncertainty labels.
This model achieved an AUC of 0.907 when tested on 5-
class 500 test images. In another work, DualNet [24], dual
convolutional networks jointly trained on both the frontal
and lateral CXRs of MIMIC-CXR [12] (more than 350,000
scans), achieved better performance in classification when
compared to baseline (i.e. frontal and lateral) classifiers.

2.3. Auto-encoders in medical imaging classification

Autoencoder-based representation learning is used in
medical imaging applications [28, 1, 29] to learn represen-
tations of images for higher classification performance by
stacking auto-encoders with classifiers. One method re-
duces resolution of images using an auto-encoder and then
feeds the output to a CNN classifier [23]. This method was
trained on chestx-ray14 dataset [33] and achieved state-of-
the-art performance on 14-class classification.

2.4. Contribution

Our method compares the performance of a baseline
DenseNet and an autoencoder-based CNN architecture sim-
ilar to [23] applied to the new Chexpert dataset. As part of
our experiments, we tested changing the classifier on the
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auto-encoder based CNN as well as various pre-processing
techniques. We conducted hyperparameter tuning on our
best model. This method aims to test if we can learn the
representation of chest x-rays through feature extraction us-
ing an auto-encoder. The ultimate goal is to try different
techniques to achieve high classification performance on the
Chexpert dataset.

3. Dataset

This work uses the CheXpert dataset [11], one of the
largest publicly available chest x-ray datasets. It contains
224,316 scans of 65,240 unique patients, and each scan is
labeled for the presence of 14 common chest radiographic
observations. There are three types of labels possible. Pos-
itive or a 1, indicates the disease is present. Negative or 0
indicates the disease is not present or uncertain (u), means
the expert radiologists could not agree on if the image con-
tained the disease or not. The standard dataset is divided
approximately into 223,413 training images (shown in Ta-
ble 2), 232 validation images and 500 test images. However,
the test images are not publicly available, so for a model to
be evaluated on the test set it has to be sent to CheXpert
competition. This evaluation process takes 2 weeks, which
makes it impossible to test all the experiments on the test
set during the project time frame. Therefore, we split the
validation dataset into 2 halves, using the first half for val-
idation and the second half for testing. The validation set
is annotated by 3 board-certified radiologists taking the ma-
jority vote as the true label. CheXpert authors suggested an
evaluation protocol over 5 classes: Cardiomegaly, Atelecta-
sis, Pleural Effusion, Consolidation, and Edema, which are
picked based on their prevalence from the validation set and
clinical importance. The effectiveness of trained models is
measured by AUC metric. Our model takes chest x-ray im-
ages as an input and outputs the probability of each of the 5
observations.

Pathology Positive(%) Negative(%)
Cardiomegaly 35087 (15.7) 188326 (84.3)
Atelectasis 67115 (30.0) 156298 (70.0)
Pleural Effusion 97815 (43.8) 125598 (56.2)
Consolidation 42525 (19.0) 180888 (81)
Edema 65230 (29.2) 158183 (70.8)

Table 1. This table reports the number of studies which contain
these observations in the actual training set after applying U-Ones.

Pathology Positive Uncertain Negative
No Finding 16627 (8.86) 0 (0.0) 171014 (91.14)
Enlarged Cardiom. 9020 (4.81) 10148 (5.41) 168473 (89.78)
Cardiomegaly 23002 (12.26) 6597 (3.52) 158042 (84.23)
Lung Lesion 6856 (3.65) 1071 (0.57) 179714 (95.78)
Lung Opacity 92669 (49.39) 4341 (2.31) 90631 (48.3)
Edema 48905 (26.06) 11571 (6.17) 127165 (67.77)
Consolidation 12730 (6.78) 23976 (12.78) 150935 (80.44)
Pneumonia 4576 (2.44) 15658 (8.34) 167407 (89.22)
Atelectasis 29333 (15.63) 29377 (15.66) 128931 (68.71)
Pneumothorax 17313 (9.23) 2663 (1.42) 167665 (89.35)
Pleural Effusion 75696 (40.34) 9419 (5.02) 102526 (54.64)
Pleural Other 2441 (1.3) 1771 (0.94) 183429 (97.76)
Fracture 7270 (3.87) 484 (0.26) 179887 (95.87)
Support Devices 105831 (56.4) 898 (0.48) 80912 (43.12)

Table 2. The CheXpert dataset consists of 14 labeled observations.
This table reports the number of studies and % which contain these
observations in the training set. (This data is taken from [11])

4. Methodology

4.1. Data Pre-processing

4.1.1 Image Processing

Before we trained the models, we made some modifications
to the images. Our models used a Densenet [31] which re-
quires the height and width of images to be at least 224
and be loaded in a certain range. All images were always
normalized with the following values: mean=[0.485, 0.456,
0.406], std=[0.229, 0.224, 0.225]. As part of our experi-
ments, we added some additional pre-processing in some
of the models. We used common pre-processing guidelines
that were discussed in class 4.1. In particular, we added
Gaussian noise and randomly rotated the images before they
were loaded into the model for training.

4.2. Handling of the Unknowns

We tried three methods for handling the unknown labels
in the training set: ignoring them (U-Ignore), setting the
unknown to always be one or positive (U-Ones) or setting
the unknowns to be zero or negative (U-Zeros).

4.2.1 Cost-Sensitive Learning

To handle class imbalance, cost-sensitive learning is used
where samples are assigned weights to match a certain data
distribution. In our case, weighting by inverse class fre-
quency is used. However, the results of this method were
not good on our dataset using baseline classifier (average
AUC = 0.537). One reason behind this could be the dif-
ference in class distribution between training and validation
sets (Table 3 shows distribution of validation set).
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Figure 1. Auto-encoder-based CNN architecture. This diagram is taken from [23]

Pathology Positive(%) Negative(%)
Cardiomegaly 27 (23.3) 89 (76.7)
Atelectasis 28 (24.1) 88 (75.9)
Pleural Effusion 18 (15.5) 98 (84.5)
Consolidation 9 (7.8) 107 (92.2)
Edema 19 (16.4) 97 (83.6)

Table 3. This table reports the number of studies which contain
these observations in the validation set after applying U-Ones.

Figure 2. Overview of Densenet-121

4.3. Models

4.3.1 Baseline Model

Our baseline model consisted of a Densenet-121 [8]. We
decided to use a Densenet-121 because the original paper
[11] had the best results with it. The baseline model takes
in an image of size 1×224×224 and outputs the probabil-
ity of each of the 5 classes tested. We then used softmax
to determine the most likely predicted classification of the
image from the densenet. An overview of densenet archi-
tecture [25] can be seen in Figure 2. For the baseline model
we used cross-entropy loss:

L1(Y, Ŷ ) =

5∑
c=1

[yc log(1− ŷc) + (1− yc) log ŷc] (1)

Where c is the disease index, yc is the actual label of cth

disease, ŷc is the predicted label of cth disease, and Y and

Ŷ are actual label vector and predicted label vector respec-
tively.

4.3.2 AutoEncoder-based CNN

Our work uses an AE-CNN model for disease classification
as [23]. The architecture used consists of 3 main modules:
encoder, decoder and classifier (Figure 1). The downsam-
pled output of the encoder is fed as an input to the classifier
for classification and to the decoder for reconstruction. The
auto-encoder and classifier are trained jointly.

Encoder: The encoder takes in an image of size
1×224×224 and produces a latent code tensor of size it to
1×56×56. The encoder consists of 2 convolution layers:
first layer of 32 kernels of size 5 × 5 each with a stride of 4
followed by exponential linear units activation function [2]
(with zero padding to preserve image size), and a second
layer of kernels of size 1 × 1 with stride of 1 with Clippe-
dReLU activation. The definition of ClippedReLU is:

ClippedReLU(x) = min(max(0, x), 1) (2)

Decoder: The decoder consists of a single convolution layer
with kernel size 3 × 3 with a stride of 1 followed by sub-
pixel shuffling [27] to reconstruct high-resolution image
back. ClippedReLU activation is then used.

Classifier: Our baseline Densenet-121 classifier is inte-
grated with this architecture. We used non-pretrained and
CheXpert-pretrained versions of our baseline classifier.

Loss Function: The loss function used in the AE-CNN
model is different from what is used in the baseline model.
The loss is the weighted sum of classification loss and re-
construction loss.

L = λL1 + (1− λ)L2 (3)

Where L1 is classification loss, L2 is reconstruction loss and
λ is a hyperparameter from 0 to 1 indicating importance of
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classification loss. We set λ = 0.9 as in [23]. Binary cross
entropy (BCE) loss function is used for classification er-
ror during training. We used the same binary cross entropy
(BCE) loss as used in the baseline training and is denoted
by L1. Mean-squared error (MSE) is used for autoencoder
error (L2).

4.4. Training and Testing

As discussed earlier, the actual test set for CheXpert is
not publicly available and requires two weeks for evalua-
tion. Our test set consisted of the second half of the valida-
tion set. To match the images with their appropriate classi-
fications, we had a CSV file where each row contained the
image file location, and a 0 or 1 for each class.

During training, we ran the model for 10 epochs and
saved the weights that performed best on the validation data.
We then used those weights for the test set.

We trained and tested the following the models: a base-
line with U-ones, baseline with U-zeros, baseline with U-
ignore, baseline with noise, AE-CNN with a non-trained
baseline, AE-CNN with a trained baseline. We then tuned
the model that had the best performance.

5. Experiments and Results
We used PyTorch in all of our experiments.

5.1. Area Under the Curve (AUC)

To measure how well we were performing, we used a
metric called Area Under the Curve (AUC), which was the
metric used in the original paper that contained the dataset
[11]. The area under the curve refers to the area under
the ROC or Receiving Operator Characteristic (ROC). The
ROC curve is a measure that relates sensitivity and speci-
fity. Sensitivity is the number of true positives divided by
the number of samples that are actually positive( sum of
true positives and false negatives). The ROC is a graph of
1-specifity. [4]. AUC is a more important measure than
other measures like accuracy because we want to differen-
tiate from models that may have a high accuracy but have a
large rate of false negatives or positives. Since this dataset
is part of the healthcare domain, a correctly identified false
positive is just as bad as an incorrectly identifying a disease.

Model Name Average AUC
Densenet w/U-Ones .853
Densenet w/U-Zeros .852
Densenet w/U-Ignore .57

Densenet and Pre-Processing .845
AE-CNN w/no pre-training .829

AE-CNN w/pre-trained classifier .756
AE-CNN w/pre-trained classifier and pre-processing .72

Table 4. Experimental results

5.2. Baseline Results

All results can be seen Table 4. We ran three baseline
experiments and the three experiments differed in how the
unknowns in the training data were treated: ignoring (U-
Ignore) the unknowns, mapping to positive (U-Ones), or
mapping to negative (U-Zeros). U-Ones yielded the best
results. The baseline experiment used a batch size of 16,
learning rate of 10−4, a dropout of .9 and the Adam opti-
mizer [13].

5.2.1 Baseline with Pre-Processing

We ran the U-ones baseline model with the pre-training as
described in Section 4.1. Everything else was kept the same.

5.3. AE-CNN

5.3.1 Not pre-trained

In this experiment, the untrained baseline classifier was in-
tegrated with the autoencoder. The model used the same
hyperparameters as the baseline experiments described in
Section 5.2.

5.3.2 Pre-trained

The exact same experiment as mentioned in Section 5.3.1
was repeated except that we used a trained version of our
baseline model. 5.2

5.3.3 Preprocessing

Same experimental set up is used as in Section 5.3.1 except
we added the pre-processing as described in Section 4.1.

Average AUC Learning Rate Dropout Batch Size
0.829 0.0001 0.9 16
0.83 0.0002 0.9 16
.831 0.001 0.9 16
.829 .0001 .9 32
.825 .0001 .9 64
.832 .0001 .5 16
.831 .0001 .1 16

Table 5. Hyperparameter Tuning for AE-CNN

5.4. Best model: hyperparameters tuning

Comparing the results of the previous 3 AE-CNN exper-
iments, we can see that the best model was the AE-CNN
with no pre-training. The model had an average AUC =
0.829. Therefore, this model setting was picked to do hy-
perparameter tuning. All values were kept the same as the
previous experiment except the specific hyperparameter be-
ing tuned. Table 5 shows the results of the experiments for
each hyperparameter (learning rate, batch size and dropout)
value. The top performing model setting is bolded.
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6. Discussion
6.1. Effect of Pre-processing

We expected that by pre-processing the images as de-
scribed in Section 4.1, we would have improved the per-
formance model (compared to the original Densenet). This
indicates that instead of learning the actual representation of
the images, the model learned noise. The image that was the
output of the pre-processing did not preserve the features of
the original image that helped identify the various diseases.
In the future, more variants of the parameters in the image
processing should be looked at. Also, the images should be
cropped so that the model does not learn noise that exists
around the actual x-ray.

6.2. AE-CNN without training

As seen from the results, this model had a slightly lower
AUC score than the baseline Densenet. This could be due
to the fact that we used low resolution images for training,
which were of size 390×320. We used small images due to
our space capacity limitations. The encoder downsamples
the images to 56×56 before feeding them to the classifier,
which could be too low of a resolution to learn any useful
feature representation. As a future improvement, the higher
resolution version of this dataset can be used to test out this
model. Since the current model has shown good results on
the current low resolution images, we expect it to have bet-
ter performance on the high resolution images.

6.3. AE-CNN with training

The AE-CNN that had a classifier from a pre-trained
Densenet had worse performance than the AE-CNN that
contained a Densenet that was not pre-trained. We think
this is likely due the Densenet overfitting to the data. The
classifier that was used was trained once by itself and then
retrained again with the auto-encoder. To fix this in the fu-
ture, the weights of the Densenet could be frozen during the
training process of the auto-encoder.

6.4. Limitations and Future Work

There are also some other limitations with the current
dataset. One limitation is the class imbalance of the dataset
which we believe significantly affects the performance.
Also, expanding the problem to include the 14 classes of
all thoracic diseases will impose more bias in the data as
well. For example, the ’No findings’ class has very few
samples in the dataset which means that most of the data
is collected from diseased people. The samples are also
all from a certain geographical area and therefore are not
a good representation of healthy people. This is not reli-
able in developing a real world model that can ultimately
outperform radiologists in such critical classification medi-
cal problems. One way to handle this would be expanding

the dataset to include lateral views (not just frontal) with
more balanced classes including healthy conditions. Also,
handling uncertain labels is another limitation that can be
studied further to improve the results.

Another limitation is that we considered the 5 classes to
be completely independent of each other and this might not
actually be the case. It could be the case that the diseases
(or a subset of them) are correlated with each other and that
having one means it is likely that you will have another.
Future work should try to address this problem.

Lastly, there are several alternative methods that could
have been used other than the Densenet and AE-CNN. A
semi-supervised approach would likely be promising be-
cause it would be able to handle unlabeled datasets since
there are not many labeled Chest X-Ray datasets.

7. Conclusion
We applied different versions of an existing AE-CNN

model that had state-of-the-art performance on the chest-
xray-14 [33] dataset to a brand new CheXpert dataset to
explore its performance. The results of the AE-CNN (aver-
age AUC = 0.829) did not outperform the baseline Densenet
model (average AUC = 0.853), but we believe that, given
the limitations of the dataset and computational resources,
the results of the AE-CNN are promising. If combined with
the proposed suggestions, we think the results might out-
perform the baseline Densenet.

8. Work Distribution
Nouran worked on implementing the AE-CNN. Michal

worked on implementing the baseline and pre-processing
techniques. Together they worked on the experiments, hy-
perparameter tuning and writing the report.
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